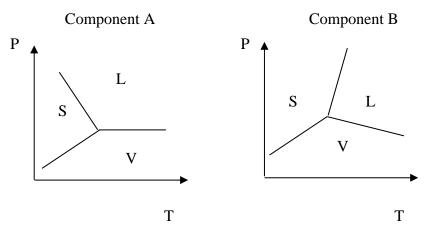
UNIVERSITY CEU SAN PABLO SCHOOL OF PHARMACY DEPARTMENT OF CHEMISTRY AND BIOCHEMISTRY

ISSUES OF PHYSICAL CHEMISTRY


2018-2019

LESSON 3

10. Certain substance exists in two solid forms, Q and R, as well as in the liquid and vapour phases. The following triple points have been observed:

Temperature (oC)	P (atm)	Phases		
10	1	Q, R, vapour		
80	10	R, liquid, vapour		
50	1000	Q, R, liquid		

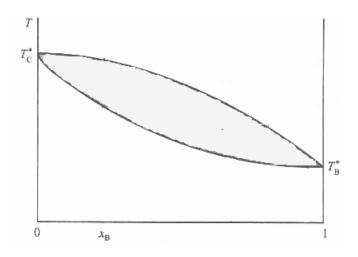
- **a**) Plot schematically the PT phase diagram for that substance, indicating the number of phases in each region.
- **b**) Demonstrate, using the appropriate equations that $\rho_Q > \rho_R$, knowing that ΔH for $Q \rightarrow R$ transition is positive.
- **11.** Indicate if ΔH , ΔV and dP/dT is positive, zero or negative in each of the following phase changes:
 - a) liquid-solid
 - **b**) liquid-vapour
 - c) solid-vapour
- **12.** The diagrams of two pure components A and B are as indicated in the following figures:

What will be the sign of the volume changes in the melting and vaporization of components A and B? What conclusions can be drawn from the results obtained?

- 13. Indicate whether the following statements are true, using the appropriate equations:
 - a) In a single-component system the solid has always higher density than the liquid when the solid-liquid line has a positive slope.
 - **b**) The plot of log P versus 1/T is always a line of positive slope.
 - c) The pressure and temperature of the critical point of CO_2 are .2 atm and 304.2 K, respectively while its triple point is at 5.11 atm and 216.8 K. If CO_2 is progressively heated at constant pressure of 1 atm, to reach 298 K, then CO_2 is in liquid state.
- 14. T_{ms}^{o} and T_{b}^{o} of Ar are 83.8 K and 87.3 K, respectively; its triple point is at 83.8 K and 0.7 atm and the values of the critical temperature and pressure are 151 K and 48 atm. Indicate whether the Ar is in solid, liquid or vapour phase in each of the following conditions:
 - a) 0.9 atm and 90 K
 - **b**) 0.7 atm and 80 K
 - **c**) 0.8 atm and 88 K
 - **d**) 1.2 atm and 86 K
 - **e**) 0.5 atm and 84 K
- **15.** Indicate whether the following statements true or false, reasoning the answers:
 - **a**) In a single-component system the maximum number of phases that may coexist in equilibrium is three.
 - **b**) The equation: $\frac{dP}{dT} = \frac{\Delta H}{T\Delta V}$ is an exact equation.
 - c) Solid water can not exist at $100 \circ C$.
 - **d**) In a single-component system, the most stable phase at a given T and P is the phase with the lowest free energy.
- **16.** Could equation $\operatorname{Ln} \frac{P_2}{P_1} = \frac{\Delta \overline{H}}{R} \left(\frac{1}{T_1} \frac{1}{T_2} \right)$ be applied to a first-order transition carbon

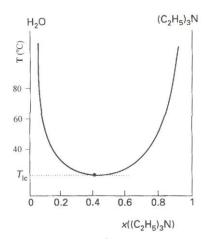
 $(graphite) \rightarrow Carbon (diamond)?$

Indicate the approaches considered to obtain the above equation.


17. The following table shows the vapour pressures of water and acetone of solutions in equilibrium at 25 °C:

X ¹ _{Acetone}	0	0.0333	0,117	0,236	0,420	0,737	1
X ^v _{Acetone}	0	0.6230	0.8203	0.8690	0.8817	0.9187	1
P _{Acetone} / (mmHg)	0	38	105	146	164	192	229
P _{water} / (mmHg)	24	23	23	22	22	17	0

a) Draw the phase diagram of the total vapour pressure as a function of mole fraction of acetone in the solution and vapour. Identify the different regions of the diagram, indicating the phases present.


- b) Calculate the composition of the two phases in equilibrium of a solution consisting of 50 g of acetone and 15.5 g of water at 225 mm Hg, if the pressure is reduced to 100 mmHg.
- c) Indicates that changes occur if the pressure is decreased to 25 mmHg. Data: $M_{acetone} = 58 \text{ g} \cdot \text{mol}^{-1}$; $M_{water} = 18 \text{ g} \cdot \text{mol}^{-1}$

- 18. Two liquids A and B form an ideal solution. Their pure vapour pressures at 303 K are 80 and 30 kPa, respectively.
 - **a**) Represent the phase diagram, knowing that when x_B^V is 0.1 the total pressure is 60 kPa and when x_B^V is 0.2, the total pressure is 50 KPa
 - b) Calculate the ratio of two phases are in equilibrium, at 35 kPa, for a total mole fraction of B equals 0.6
- 19. Indicate the differences in applying the fractional distillation to a mixture of two components with ideal and real behaviour.
- 20. A solution of the system of the figure with molar fraction of B equal to 0.30 is heated isobarically in a closed container
 - a) calculate the composition of the first vapour formed
 - **b**) calculate the composition of each of the phases when half the moles of liquid is vaporized.

- 21. Chloroform and ethanol present an azeotrope at atmospheric pressure, of 87.4% of CH₃Cl and with a boiling point of 53.43°C. The boiling temperatures of chloroform and ethanol are 61.2 ° C and 64.7 ° C, respectively
 - a) Describe the azeotropic compound.
 - **b**) Indicate if pure CH₃Cl can be obtained by fractional distillation from a mixture of 30% of CH₃Cl
- 22. Explain, briefly, how the compositions of the phases in equilibrium in a liquidliquid diagram change with:
 - a) the overall composition of the system at constant temperature.
 - **b**) temperature at constant overall composition.

23. The following diagram of liquid-liquid equilibrium:

Indicate what changes occur in the system when preparing mixtures of compositions $X_{(C_2H_5)_{3^N}}$ equal to 0.05; 0.30; 0.40 and 0.60, all at 40 ° C and with the same overall number of moles.